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LOGIT REGRESSION

• Should be used if the dependent variable (Y) 
is a nominal scale

• Here it is assumed that Y has the values 0 or 1
• The model of the conditional probability of Y, 

E[Y | X], is based on the logistic function 
(E[Y | X] is read “the expected value of Y given 
the value of X”)

• But
Why cannot E[Y | X] be a linear function also in 
this case?
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The linear probability model: LPM
• The linear probability model 

(LPM) of yi when yi can take only 
two values (0, 1) assumes that 
we can interpret E[yi | Xi] as a 
probability

• Xi = {x1i, x2i, x3i, …, x(K-1)i}
• E[yi | Xi] = b0 + Σj bj xji = Pr[yi =1] 
• This leads to severe problems:
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Are the assumptions of a linear regression 
model satisfied for the LPM?

• One assumptions of the LPM is that  the 
residual, ei satisfies the requirements of OLS

• The the residual must be either 
– ei = 1 – (b0 + Σj bj xji) or 
– ei = 0 – (b0 + Σj bj xji) 

• This means that there is heteroscedasticity (the 
residual varies with the size of the values on the 
x-variables)

• There are estimation methods that can get 
around this problem (such as 2-stage weighted 
least squares method)

• One example of LPM:
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OLS regression of a binary dependent variable on 
the independent variable ”years lived in town”

,000-3,694,002-,008YEARS LIVED IN TOWN

,00010,147,059,594(Constant)
Sig.t

Std. 
ErrorB

Dependent Variable: 
SCHOOLS SHOULD CLOSE

15237,529Total

,22815134,418Residual

,000(a)13,6483,11113,111Regression
Sig.F

Mean
Squaredf

Sum of
Squares

ANOVA tabell

The regression looks OK in these tables
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Here the predicted y is 
below 0 for reasonable 
values of x

Scatter plot with line of regression. Figure 7.1 Hamilton

Spring 2010 © Erling Berge 2010 8

Conclusion: LPM model is wrong 
• The example shows that for reasonable values 

of the x variable we can get values of the 
predicted y where
E[yi | Xi] >1 or E[yi | Xi] < 0, 

• For this there is no remedy
• LPM is for substantial reasons a wrong model
• We need a model where we always will have 

0 ≤ E[yi | Xi] ≤ 1 
• The logistic function can provide such a model 
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The logistic function
The general logistic function is written
• yi = α/(1+γ*exp[-βxi]) + εi
α>0 provides an upper limit for yi
this means that 0< yi < α
γ determines the horizontal point for rapid growth 
If we determine that α = 1 and γ = 1 one will 
always find that
• 0 < 1/(1+exp[-βxi]) < 1
The logistic function will for all values 
of xi lie between 0 and 1  
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Logistic curves for different β

64020020

1

0.8

0.6

0.4

0.2

0

y= 1
1+exp(-0.5x)

y= 1
1+exp(-0.25x)

y= 1
1+exp(-0.1x)

Horizontal line through ( )0, 1

β determines how rapidly the curve grows 
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MODEL (1)
Definitions:
• The probability that person no i shall have the 

value 1 on the variable yi will be written Pr(yi =1).
• Then Pr(yi ≠ 1) = 1 - Pr(yi=1) 
• The odds that person no i shall have the value 1 

on the variable yi , here called Oi, is the ratio 
between two probabilities 

( ) ( )
( )

Pr 1
1

1 Pr 1 1
i i

i i
i i

y py
y p
=

= = =
− = −

O
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MODEL (2)
Definitions:
• The LOGIT , Li , for person no i (corresponding 

to Pr(yi=1)) is the natural logarithm of the odds, 
Oi , that person no i has the value 1 on variable 
yi, is written:
Li = ln(Oi) = ln{pi/(1-pi)}

• The model assumes that Li is a linear function of 
the explanatory variables xj , 

• i.e.:
• Li = β0 + Σj βj xji , where j=1,..,K-1, and  i=1,..,n 
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MODEL (3)

• Let X = (the collection of all xj ), then the 
probability of Yi = 1 for person no i 

[ ] ( )
1

0
1

1 exp( )Pr( 1) X
1 exp 1 exp( )

where 

i
i i i

i i

K

i j ji
j

Ly E y
L L

L X
−

=

= = = =
+ − +

= β + β∑

|

The graph of this relationship is useful for the 
interpretation what a change in x means
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MODEL (4)
In the model Yi = E[yi | Xi] + εi the error is either
• εi = 1 - E[yi | Xi] with probability E[yi | Xi] 

(since Pr(yi = 1) = E[yi | Xi] ), 
or the error is
• εi = - E[yi | Xi] with probability 1 - E[yi | Xi]

• Meaning that the error has a distribution 
known as the binomial distribution with 
pi = E[yi | Xi]  
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Estimation by the ML method

• The method used to estimate the parameters in 
the model is Maximum Likelihood

• The ML-method gives us the parameters that 
maximize the likelihood of finding just the 
observations we have got

• This Likelihood we call L
• The criterion for choosing regression parameters 

is that the Likelihood becomes as large as 
possible
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Maximum Likelihood (1)
• The Likelihood equals the product of 

the probability of each observation. 
For a dichotomous variable where 
Pr(Yi = 1)=Pi this can be written

( )( ){ }1

1
1 ii

n YY
i ii

P P −

=
= −∏L
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Maximum Likelihood (2)
• It is easier to maximize the likelihood L

if one uses the natural logarithm of L :

( ) ( ) ( ){ }
1

ln ln 1 ln 1
n

i i i i
i

y P y P
=

= + − −∑L

• The natural logarithm of L is called the 
LogLikelihood, It will be written LL. 

• LL has a central role in logistic regression. 
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Maximum Likelihood (3)

• The LogLikelihood LL will always be 
negative

• Maximizing LL is the same as 
minimizing the positive LogLikelihood; 
i.e. minimizing -LL

• Finding parameter values that minimizes 
- LL can be done only by ”trial and 
error”, i.e. using an iterative procedure
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Iterative estimation

-,041,460195,2674
-,041,460195,2673
-,041,455195,2692
-,034,376195,6841Step

-,276209,2120Initial 

livedConstant

Coefficients 

-2 Log 
LikelihoodIteration

From 
Hamilton 
Tabell 7.1

Note the column titled -2 LogLikelihood
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Footnotes to the tables

• Step 0: Point of departure is a model with 
only a constant and no variables

• Iterative estimation
– Estimation ends at iteration no 4 since the 

parameter estimates changed less than 0.001
For the next slide:
• The Wald statistic that SPSS provides 

equals the square of the “t” that Hamilton 
(and STATA) provides (Wald = t2)
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Logistic model instead of LPM

1,584,08013,069,263,460Constant
,960,001111,399,012-,041Lived in town

Exp(B)Sig.dfWaldS.E.B
Dependent: 
Schools should close

,000-3,694,002-,008YEARS LIVED IN TOWN

,00010,147,059,594(Constant)
Sig.t

Std. 
ErrorB

Dependent Variable: 
SCHOOLS SHOULD CLOSE

OLS regression (slide 6 above)

Logistic regression 
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SCHOOLS 
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YEARS LIVED IN 
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Predicted 
probability
YEARS LIVED IN 
WILLIAMSTOWN

The linear model 
is entered 
beside the 
logistic 

Fig 7.4 
Hamilton
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TESTING
Two tests are useful
• (1) The Likelihood ratio test 

– This can be used analogous to the F-
test (e.g. comparing two NESTED 
models)

• (2) Wald test  
– The square root of this can be used 

analogous to the t-test but is normally 
distributed
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Interpretation (1)

• The difference between the linear model and 
the logistic is large in the neighbourhood of 0 
and 1 

• LPM is easy to interpret: Yi = β0 when x1i=0, 
and when x1i increases with one unit Yi
increases with β1 units

• The logistic model is more difficult to 
interpret. It is non-linear both in relation to 
the odds and the probability
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ODDS and ODDS RATIOS

• The Logit, Li, ( Li= β0 + Σj βj xji ) is defined as 
the natural logarithm of the odds 

This means that
• odds  = Oi (Yi=1) = exp(Li) = eLi

and
• Odds ratio= Oi (Yi=1| Li’) / Oi (Yi=1| Li)

– where Li’ and Li have different values on only 
one variable xj.
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Interpretation (2)
• When all x equals 0 then Li = β0 This means that 

the odds for yi = 1 in this case is exp{β0}
• If all x-variables are kept fixed (they sum up to a 

constant) while x1 increases with 1, the odds for 
yi = 1 will be multiplied by exp{β1} 

• This means that it will change with 
100(exp{β1} – 1) %

• The probability Pr{yi = 1} will change with a 
factor affect by all elements in the logit
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Logistic regression: assumptions
• The model is correctly specified

• The logit is linear in its parameters
• All relevant variables are included
• No irrelevant variables are included

• x-variables are measured without error 
• Observations are independent
• No perfect multicollinearity
• No perfect discrimination
• Sufficiently large sample
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Assumptions that cannot be tested
• Model specification

• All relevant variables are included
• x-variables are measured without error 
• Observations are independent
Two will be tested automatically. 
• If the model can be estimated by SPSS 

there is
– No perfect multicollinearity and
– No perfect discrimination 
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Assumptions that can be tested

• Model specification
• logit is linear in the parameters
• no irrelevant variables are included

• Sufficiently large sample 
• What is “sufficiently large” depends on the number 

of different patterns in the sample and how cases 
are distributed across these

• Testing implies an assessment of whether  
statistical problems leads to departure 
from the assumptions
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LOGISTIC REGRESSION
Statistical problems may be due to

• Too small a sample
• High degree of multicollinearity

– Leading to large standard errors (imprecise 
estimates)

– Multicollinearity is discovered and treated in the 
same way as in OLS regression 

• High degree of discrimination (or separation) 
– Leading to large standard errors (imprecise 

estimates)
– Will be discovered automatically by SPSS
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Discrimination in Hamilton table 7.5

• Odds for weaker 
requirements is 44/202 = 
0,218 among women 
without small children 

• Odds for weaker 
requirement is 0/79 = 0 
among women with small 
children 

• Odds rate is 0/0,218 = 0 
hence exp{bwoman}=0 

• This means that bwoman = 
minus infinity 

044Weaker 
OK

79202Not 
weaker

Women 
with 
small 
children

Women 
without 
small 
children

Y = 
Strength of
water 
quality 
standards
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Discrimination/ separation
• Problems with discrimination appear when we 

for a given x-value get almost perfect prediction 
of the y-value (nearly all with a given x-value 
have the same y-value)

• In SPSS it may produce the following message:

• The NOMREG procedure continues despite the above 
warning(s). Subsequent results shown are based on the 
last iteration. Validity of the model fit is uncertain.

• There is possibly a quasi-complete separation in the 
data. Either the maximum likelihood estimates do not 
exist or some parameter estimates are infinite.

Warnings
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Logistic regression

• If the assumptions are satisfied logistic 
regression will provide normally 
distributed, unbiased and efficient (minimal 
variance) estimates of the parameters
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The LikeLihood Ratio test (1)

• The ratio between two Likelihoods equals the 
difference between two LogLikelihoods

• The difference between the LogLikelihood (LL) 
of two nested models, estimated on the same 
data, can be used to test which of two models 
fits the data best, just like the F-statistic is used 
in OLS regression

• The test can also be used for singe regression 
coefficients (single variables). In small samples 
it has better properties than the Wald statistic
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The LikeLihood Ratio test (2)

The LikeLihood Ratio test statistic 
• χ2

Η = -2[LL(model1) - LL(model2)]
will, if the null hypothesis of no difference 
between the two models is correct, be 
distributed approximately (for large n)  as 
the chi-square distribution with number of 
degrees of freedom equal to the difference 
in number of parameters in the two models 
(H)
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Example of a Likelihood Ratio test
• Model 1: just constant
• Model 2: constant plus one variable

• χ2
Η = -2[LL(model1) - LL(model2)]

= -2LL(model1) + 2LL(model2)
• Find the value of the ChiSquare and 

the number of degrees of freedom
• e.g.: LogLikelihood (mod1) = 209,212/(-2)
• LogLikelihood (mod2) = 195,267/(-2)

195,267
195,267
195,269
195,684
209,212

From
Tab 7.1:
-2 Log 

Likelihood
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The Wald test (1)
• The Wald (or chisquare) test statistic provided 

by SPSS = t2 = (bk/ SE(bk))2 (where t is the 
normally distributed t used by Hamilton) can be 
used for testing single parameters similarly to 
the t-statistic of the OLS regression

• If the null hypothesis is correct, t will (for large n)  
in logistic regression be approximately normally 
distributed

• If the null hypothesis is correct, the Wald statistic 
will (for large n) in logistic regression be 
approximately chisquare distributed with df=1
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Excerpt from Hamilton Table 7.2

5,649,18411,7681,3021,731Constant
8,784,000121,919,4642,173Hsc
3,347,00916,739,4651,208Contam

,847,06513,404,090-,166Educ
,955,00219,698,015-,046Lived

Exp(B)Sig.dfWaldS.E.BVariables

149,3825
149,3824
149,3823
149,4662
152,5341
209,2120

-2 Log likelihoodIterasjon
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Confidence interval for parameter estimates

• Can be constructed based on the fact that 
the square root of the Wald statistic 
approximately follows a normal distribution 
with 1 degree of freedom 

• bk - tα*SE(bk) < βk < bk + tα*SE(bk) 
where tα is a value taken from the table of 
the  normal distribution with level of 
significance equal to α
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Can be constructed based on the t-
distribution (1)

• If a table of the normal distribution is missing 
one may use the t-distribution since the t-
distribution is approximately normally 
distributed for large n-K (e.g. for n-K > 120)
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Excerpt from Hamilton Table 7.3 (from SPSS)

18,060,07113,2591,6032,894Constant

,108,02614,964,999-2,226nodad

,511,23611,406,566-,671kids

,950,9261,009,557-,052female

11,223,000122,508,5102,418hsc

3,604,00817,094,4811,282contam

,814,02714,887,093-,206educ

,954,00617,550,017-,047livedStep 1
Exp(B)

Prob>t
Sig.df

t2 

WaldS.E.B
STATA
SPSS
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More from Hamilton Table 7.3

-2,226-,671-,0522,4181,282-,206-,0472,894141,0495

-2,225-,671-,0522,4181,282-,206-,0472,893141,0494

-2,184-,662-,0502,4011,269-,204-,0462,859141,0543

-1,844-,580-,0372,2391,147-,187-,0412,538141,4822

-1,074-,365-,0151,764,782-,130-,0271,565147,0281Step1

-0,276209,212Step0

nodadkidsfemalehsc
conta

meduclivedConst

Coefficients
-2 Log 

likelihoodIteration
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Is the model in table 7.3 better than the 
model in table 7.2 ?

• LL(model in 7.3) = 141,049/(-2)
• LL(model in 7.2) = 149,382/(-2)

• χ2
Η = -2[LL(model 7.2) - LL(model 7.3)]

• Find χ2
Η value 

• Find H
• Look up the table of the chisquare

distribution 
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The model of the probability of 
observing y=1 for person i

[ ] ( )
1

0
1

exp( )1Pr( 1)
1 exp 1 exp( )

where the logit  is a linear function 

of the explanatory variables

i
i i

i i

K

i j ji
j

Ly E y x
L L

L X
−

=

= = = =
+ − +

= β + β∑

|

It is not easy to interpret the meaning of the β
coefficients just based on this formula
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The odds ratio

• The odds ratio, O, can  be interpreted as the 
relative effect of having one variable value 
rather than another 

• e.g. if xki = t+1 in Li’ and xki = t in Li
• O = Oi (Yi=1| Li’)/ Oi (Yi=1| Li)

= exp[Li’ ]/ exp[Li] 
= exp[βk]

• Why βk ?
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The odds ratio : example I

• The Odds for answering yes = 

eb0+b1*Alder+b2*Kvinne+b3*E.utd+b4*Barn i HH

• The odds ratio for answering yes between women and men =

0 1 2 3 4
2

0 1 2 3 4

* *1 * . * _ _

* *0 * . * _ _

b b Alder b b E utd b Barn i HH
b

b b Alder b b E utd b Barn i HH

e e
e

+ + + +

+ + + + =

Remember the rules of power exponents
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The odds ratio : example II

• The Odds for answering yes given one 
year of extra education

( )0 1 2 3 4
3

0 1 2 3 4

* * * . 1 * _ _

* * * . * _ _

b b Alder b Kvinne b E utd b Barn i HH
b

b b Alder b Kvinne b E utd b Barn i HH

e e
e

+ + + + +

+ + + + =

Remember the rules of power exponents
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Example from Hamilton table 7.2
• What is the odds ratio for yes to closing 

the school from one year extra education?
• The odds ratio is the ratio of two odds 

where one odds is the odds for a person 
with one year extra education

0 1 2 3 4

0 1 2 3 4

2
2

2

* *( 1) * *

* * * *

*( 1)

*

b b ÅrBuddIByen b Utdanning b UreiningEigEigedom b MangeHSCmøter

b b ÅrBuddIByen b Utdanning b UreiningEigEigedom b MangeHSCmøter

b Utdanning
b

b Utdanning

e
e
e e
e

+ + + + +

+ + + +

+

= =
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Example from Hamilton table 7.2 cont. 

• Odds ratio = Exp{b2} = exp(-0,166) = 0,847
• One extra year of education implies that the 

odds is reduced with a factor of 0.847
• One may also say that the odds has 

increased with a factor of 
100(0,847-1)% = -15,3% 

• Meaning that it has declined with 15,3% 
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Concluding on logistic regression

• If the assumptions are satisfied logistic 
regression will provide normally 
distributed, unbiased and efficient (minimal 
variance) estimates of the parameters


