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LOGIT REGRESSION

« Should be used if the dependent variable (Y)
is a nominal scale

* Here it is assumed that Y has the values 0 or 1
« The model of the conditional probability of Y,
E[Y | X], is based on the logistic function

(E[Y | X] is read “the expected value of Y given
the value of X”)

* But
Why cannot E[Y | X] be a linear function also in
this case?
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The linear probability model: LPM

* The linear probability model
(LPM) of y; when y, can take only
two values (0, 1) assumes that
we can interpret E[y, | X|] as a
probability

* Xi = {Xqi, Xgi Xgis «-+» X(k-1)it

* Ely; | Xi] = by + Z; b; x; = Prly; =1]

 This leads to severe problems:
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Are the assumptions of a linear regression
model satisfied for the LPM?

 One assumptions of the LPM is that the
residual, e, satisfies the requirements of OLS

» The the residual must be either

» This means that there is heteroscedasticity (the
residual varies with the size of the values on the
x-variables)

« There are estimation methods that can get
around this problem (such as 2-stage weighted
least squares method)

* One example of LPM:

Spring 2010 © Erling Berge 2010 5
OLS regression of a binary dependent variable on
the independent variable "years lived in town”

ANOVA tabell Sum of Mean

Squares df Square F Sig.

Regression 3,111 1 3,111| 13,648 | ,000(a)

Residual 34,418 151 ,228

Total 37,529 152

Dependent Variable: Std.

SCHOOLS SHOULD CLOSE B Error t Sig.

(Constant) ,594 ,069 | 10,147 | ,000

YEARS LIVED IN TOWN -,008 002| -3,694| ,000

The regression looks OK in these tables
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Scatter plot with line of regression. Figure 7.1 Hamilton
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Conclusion: LPM model is wrong

* The example shows that for reasonable values
of the x variable we can get values of the
predicted y where

Ely; | Xi]>1 or E[y; | X{] <0,
 For this there is no remedy
 LPM is for substantial reasons a wrong model

* We need a model where we always will have

0 < Ely; | X

<1

» The logistic function can provide such a model
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The logistic function
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Logistic curves for different 3

0.8

= 1
y 1+exp(-0.5x)
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Y= Trexp(-0.25%)
_ 1
Y= Trexp(0.1%)
Horizontal line through (0, 1)
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B determines how rapidly the curve grows
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MODEL (1)

Definitions:

* The probability that person no i shall have the
value 1 on the variable y; will be written Pr(y; =1).

* Then Pr(y,# 1) =1 - Pr(y;=1)

* The odds that person no i shall have the value 1

on the variable y;, here called O, is the ratio
between two probabilities

Pr(yi :1) b;

O.(v. =1)= =
(v =1) 1-Pr(y,=1) 1-p
MODEL (2)
Definitions:

+ The LOGIT , L;, for person no i (corresponding
to Pr(y;=1)) is the natural logarithm of the odds,
O, , that person no i has the value 1 on variable
y;, IS written:

L; = In(O;) = In{pi/(1-p;)}
* The model assumes that L, is a linear function of
the explanatory variables x; ,

s ie.
* Li=Bo * Z B X; , where j=1,..,K-1,and i=1,..,n
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MODEL (3)

* Let X = (the collection of all x; ), then the
probability of Y; = 1 for person no i

1 _exp(lL)
1+exp(-L) 1+exp(L)

Pr(yi =1)= E[yi ‘Xi]:

K-1
where L, =B, +ZBiji
=1

j

The graph of this relationship is useful for the
interpretation what a change in x means

Spring 2010 © Erling Berge 2010 13

MODEL (4)

In the model Y; = E[y; | X{] + ¢ the error is either

« g =1-E[y, | Xi] with probability E[y, | Xi]
(since Pr(y; = 1) = Ely; | X{]),

or the error is

« g = - E[y; | X;] with probability 1 - E[y; | X|]

* Meaning that the error has a distribution
known as the binomial distribution with

P = Ely; | X|]
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Estimation by the ML method

* The method used to estimate the parameters in
the model is Maximum Likelihood

* The ML-method gives us the parameters that
maximize the likelihood of finding just the
observations we have got

* This Likelihood we call L

» The criterion for choosing regression parameters
is that the Likelihood becomes as large as
possible

Spring 2010 © Erling Berge 2010 15

Maximum Likelihood (1)

» The Likelihood equals the product of
the probability of each observation.
For a dichotomous variable where
Pr(Y; = 1)=P, this can be written

L-TT.{R"-R)""]

Spring 2010 © Erling Berge 2010 16
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Maximum Likelihood (2)

* |t is easier to maximize the likelihood L

if one uses the natural logarithm of L :

n
In(£)= >{y; InR+(1-y;)In(1-R)}
=1
» The natural logarithm of L is called the
LogLikelihood, It will be written LL.

* ([ has a central role in logistic regression.

Spring 2010 © Erling Berge 2010 17

Maximum Likelihood (3)

» The LogLikelihood £ will always be
negative

» Maximizing L. is the same as
minimizing the positive LogL ikelihood;
I.e. minimizing -L£L

» Finding parameter values that minimizes
- £ can be done only by trial and
error”, i.e. using an iterative procedure

Spring 2010 © Erling Berge 2010 18
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lterative estimation

Coefficients

From

Hamilton -2 Log

Tabell 7.1 Iteration Likelihood Constant lived

Initial 0 209,212 -,276

Step 1 195,684 ,376 -,034
2 195,269 ,455 -,041
3 195,267 ,460 -,041
4 195,267 ,460 -,041

Note the column titled -2 LoqLikelihood

Spring 2010 © Erling Berge 2010 19

Footnotes to the tables

« Step 0: Point of departure is a model with
only a constant and no variables
* Iterative estimation

— Estimation ends at iteration no 4 since the
parameter estimates changed less than 0.001

For the next slide:

* The Wald statistic that SPSS provides
equals the square of the “t” that Hamilton
(and STATA) provides (Wald = t?)
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Logistic model instead of LPM

OLS regression (slide 6 above)

Dependent Variable: Std.
SCHOOLS SHOULD CLOSE B Error t Sig.
(Constant) ,594 ,059 | 10,147 | ,000
YEARS LIVED IN TOWN -,008 ,002| -3,694 ,000
Logistic regression
Dependent:
Schools should close B S.E.| Wald |df| Sig. | Exp(B)
Lived in town -,041,012| 11,399| 1| ,001 ,960
Constant ,460 | ,263 3,069| 1|,080| 1,584
Spring 2010 © Erling Berge 2010 21
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TESTING

Two tests are useful

* (1) The Likelihood ratio test

—This can be used analogous to the F-
test (e.g. comparing two NESTED
models)

* (2) Wald test

— The square root of this can be used
analogous to the t-test but is normally
distributed

Spring 2010 © Erling Berge 2010 23

Interpretation (1)

» The difference between the linear model and
the logistic is large in the neighbourhood of 0
and 1

« LPM is easy to interpret: Y, = 3, when x,=0,
and when x,; increases with one unit Y,
increases with 3, units

» The logistic model is more difficult to
interpret. It is non-linear both in relation to
the odds and the probability

Spring 2010 © Erling Berge 2010 24
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ODDS and ODDS RATIOS

» The Logit, L, ( L= po + X B xii ) is defined as
the natural logarithm of the odds

This means that

* odds =0O,(Y=1) = exp(L,) = eb

and

« Odds ratio= Oi (Y;=1| L")/ O, (Y=1] L)
—where L’ and L. have different values on only

one variable x;

Spring 2010 © Erling Berge 2010 25

Interpretation (2)

« When all x equals 0 then L; = B, This means that
the odds for y, = 1 in this case is exp{B}

« If all x-variables are kept fixed (they sum up to a
constant) while x, increases with 1, the odds for
y, = 1 will be multiplied by exp{B}

« This means that it will change with
100(exp{B} — 1) %

» The probability Pr{y, = 1} will change with a
factor affect by all elements in the logit

Spring 2010 © Erling Berge 2010 26
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Logistic regression: assumptions

» The model is correctly specified

» The logit is linear in its parameters
» All relevant variables are included
* No irrelevant variables are included

x-variables are measured without error
Observations are independent

No perfect multicollinearity

No perfect discrimination

Sufficiently large sample

Spring 2010 © Erling Berge 2010 27

Assumptions that cannot be tested

» Model specification
 All relevant variables are included

 x-variables are measured without error
» Observations are independent
Two will be tested automatically.

* If the model can be estimated by SPSS
there is

— No perfect multicollinearity and
— No perfect discrimination

Spring 2010 © Erling Berge 2010 28
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Assumptions that can be tested

» Model specification
* logit is linear in the parameters
* no irrelevant variables are included

 Sufficiently large sample

» What is “sufficiently large” depends on the number
of different patterns in the sample and how cases
are distributed across these

» Testing implies an assessment of whether
statistical problems leads to departure
from the assumptions

Spring 2010 © Erling Berge 2010 29

LOGISTIC REGRESSION
Statistical problems may be due to

* Too small a sample

* High degree of multicollinearity

— Leading to large standard errors (imprecise
estimates)

— Multicollinearity is discovered and treated in the
same way as in OLS regression

» High degree of discrimination (or separation)

— Leading to large standard errors (imprecise
estimates)

— Will be discovered automatically by SPSS

Spring 2010 © Erling Berge 2010 30

© Erling Berge 2010

Spring 2010

15



Ref.:

http://www.svt.ntnu.no/iss/Erling.Berge/

© Erling Berge 2010

Spring 2010

Discrimination in Hamilton table 7.5

Odds for weaker
requirements is 44/202 =
0,218 among women
without small children

Odds for weaker
requirement is 0/79 =0
among women with small
children

Odds rate is 0/0,218 =0
hence exp{b,omant=0

This means that b, ., =
minus infinity

Spring 2010

Y= Women |Women
strength of | \yithout  |with
water

quality small  |small
standards | children |children
Not 202 79
weaker

Weaker |44 0

OK

© Erling Berge 2010
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Discrimination/ separation

* Problems with discrimination appear when we
for a given x-value get almost perfect prediction
of the y-value (nearly all with a given x-value
have the same y-value)

* In SPSS it may produce the following message:

Warnings

* There is possibly a quasi-complete separation in the
data. Either the maximum likelihood estimates do not
exist or some parameter estimates are infinite.

+ The NOMREG procedure continues despite the above
warning(s). Subsequent results shown are based on the
last iteration. Validity of the model fit is uncertain.

Spring 2010
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Logistic regression

« |f the assumptions are satisfied logistic
regression will provide normally
distributed, unbiased and efficient (minimal
variance) estimates of the parameters
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The LikeLihood Ratio test (1)

* The ratio between two Likelihoods equals the
difference between two LogLikelihoods

» The difference between the LogLikelihood (£L)
of two nested models, estimated on the same
data, can be used to test which of two models
fits the data best, just like the F-statistic is used
in OLS regression

» The test can also be used for singe regression
coefficients (single variables). In small samples
it has better properties than the Wald statistic
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The LikeLihood Ratio test (2)

The LikeLihood Ratio test statistic

* Y% =-2[cL(modell) - ££(model2)]
will, if the null hypothesis of no difference
between the two models is correct, be
distributed approximately (for large n) as
the chi-square distribution with number of
degrees of freedom equal to the difference
in number of parameters in the two models

(H)

Spring 2010 © Erling Berge 2010 35

Example of a Likelihood Ratio test

* Model 1: just constant From
* Model 2: constant plus one variable Tab 7.1:
-2 Log
Likelihood
* X% =-2[c£L(modell) - ££(model2)] 209,212
=-2c£(modell) + 2c£(model2) 195,684
» Find the value of the ChiSquare and 195,269
the number of degrees of freedom 195 267
* e.g.: LoglLikelihood (mod1) = 209,212/(-2) 195,267
LogLikelihood (mod2) = 195,267/(-2) :
Spring 2010 © Erling Berge 2010 36
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The Wald test (1)

« The Wald (or chisquare) test statistic provided
by SPSS =t2 = (b,/ SE(b,))? (where t is the
normally distributed t used by Hamilton) can be
used for testing single parameters similarly to
the t-statistic of the OLS regression

« If the null hypothesis is correct, t will (for large n)
in logistic regression be approximately normally
distributed

« If the null hypothesis is correct, the Wald statistic
will (for large n) in logistic regression be
approximately chisquare distributed with df=1

Spring 2010 © Erling Berge 2010 37

Excerpt from Hamilton Table 7.2

Iterasjon -2 Log likelihood

0 209,212

1 152,534

2 149,466

3 149,382

4 149,382

5 149,382

Variables B| S.E. | Wald | df | Sig. | Exp(B)

Lived -046| ,015| 9,698| 1| ,002| ,955

Educ -166| ,090| 3,404| 1| ,085| ,847

Contam 1,208 ,465| 6,739| 1| ,009| 3,347

Hsc 2,173| ,464|21,919| 1| ,000| 8,784

Constant 1,731 | 1,302 1,768| 1| ,184| 5,649

Spring 2010 © Erling Berge 2010 38
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Confidence interval for parameter estimates

» Can be constructed based on the fact that
the square root of the Wald statistic
approximately follows a normal distribution
with 1 degree of freedom

* by - t,*SE(by) < By < by + t,*SE(by)
where t is a value taken from the table of

the normal distribution with level of
significance equal to a

Spring 2010 © Erling Berge 2010 39

Can be constructed based on the t-
distribution (1)

« If a table of the normal distribution is missing
one may use the t-distribution since the t-
distribution is approximately normally
distributed for large n-K (e.g. for n-K > 120)

Spring 2010 © Erling Berge 2010 40
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Excerpt from Hamilton Table 7.3 (from SPSS)

STATA 2 Prob>t

SPSS B | SE. | Wald | df| Sig. |Exp(B)

Step 1 | lived -,047 ,017 7,550 1 ,006 ,954
educ -,206 ,093 4,887 1 ,027 ,814
contam 1,282 ,481 7,094 1 ,008| 3,604
hsc 2,418 ,510 | 22,508 1 ,000 | 11,223
female -,052 ,557 ,009| 1 ,926 ,950
kids -,671 ,566 1,406 | 1 ,236 511
nodad -2,226 ,999 4964 | 1 ,026 ,108
Constant 2,894 | 1,603 3,259 | 1 ,071 | 18,060

Spring 2010 © Erling Berge 2010 41

More from Hamilton Table 7.3

-2 Log
Iteration | likelihood Coefficients
conta
Const | lived | educ m hsc | female | kids | nodad
Step0 209,212 | -0,276
Step1 | 1 147,028 | 1,565 -,027 | -,130 ,782 | 1,764 | -,015|-,365| -1,074
2 141,482 | 2,538 |-,041|-,187| 1,147 | 2,239| -,037|-580| -1,844
3 141,054 | 2,859 |-,046|-,204| 1,269 2,401 | -,050|-,662 | -2,184
4 141,049 | 2,893|-,047|-206| 1,282| 2,418| -,052|-,671]| -2,225
5 141,049 | 2,894 |-,047|-,206| 1,282 2,418 | -,052|-,671| -2,226
Spring 2010 © Erling Berge 2010 42
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Is the model in table 7.3 better than the
model in table 7.2 ?

e ££(model in 7.3) = 141,049/(-2)
e ££(model in 7.2) = 149,382/(-2)

Y2, = -2[£L(model 7.2) - ££(model 7.3)]

Find %2, value

 Find H
» Look up the table of the chisquare
distribution

The model of the probability of
observing y=1 for person i

3 1 _exp(L)
“1+exp(-L) l+exp(L,)

Pr(y, =D =E[y, | X]

K-1

where the logit L, =3, + ZBJ. X is alinear function
j=1

of the explanatory variables

It is not easy to interpret the meaning of the 3
coefficients just based on this formula

Spring 2010 © Erling Berge 2010 44
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The odds ratio

- The odds ratio, O, can be interpreted as the
relative effect of having one variable value
rather than another

e.g.ifx,=t+1inL and x; =tin L,
O =0, (Y=1| L) O; (Y=1] Ly)

= exp[L;" J/ exp[L]

= exp[py]
Why By ?

Spring 2010 © Erling Berge 2010 45

The odds ratio : example |

+ The Odds for answering yes =
eb0+b1*Alder+b2*Kvinne+b3*E.utd+b4*Barn i HH

+ The odds ratio for answering yes between women and men =

by +b, *Alder +b, *1+b;*E .utd +b, *Barn_i_ HH

e eb2
eb0 +b, *Alder +b,*0+b;*E.utd +b,*Barn _i _ HH

Remember the rules of power exponents
Spring 2010 © Erling Berge 2010 46
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The odds ratio : example Il

« The Odds for answering yes given one
year of extra education

ebO +hy *Alder-+b,*Kvinne-+b;*( E.utd+1)-+b,*Barn_i_HH

_ B
etb+bl*AIder+b2*Kvinne+b3"‘E.utd +h*Bam_i_HH €
Remember the rules of power exponents
Spring 2010 © Erling Berge 2010 47

Example from Hamilton table 7.2
* What is the odds ratio for yes to closing
the school from one year extra education?

» The odds ratio is the ratio of two odds
where one odds is the odds for a person
with one year extra education

eb0 +b, * ArBuddIByen-+b, *(Utdanning +1)+b; *UreiningEigEigedom-+h, *MangeHSCmagter

eb0 +b,* ArBudd1Byen-+b, *Utdanning +b, *UreiningEigEigedom-+b, *MangeHSCmater

eb2 *(Utdanning+1)

— _ebZ
o ebz*Utdanning o

Spring 2010 © Erling Berge 2010 48
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Example from Hamilton table 7.2 cont.

« Odds ratio = Exp{b,} = exp(-0,166) = 0,847
» One extra year of education implies that the
odds is reduced with a factor of 0.847

* One may also say that the odds has
increased with a factor of

100(0,847-1)% = -15,3%
* Meaning that it has declined with 15,3%

Spring 2010 © Erling Berge 2010 49

Concluding on logistic regression

* If the assumptions are satisfied logistic
regression will provide normally
distributed, unbiased and efficient (minimal
variance) estimates of the parameters
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