SOS3003 Applied data analysis for social science Lecture note 04-2010

Erling Berge Department of sociology and political science NTNU

Spring 2010

© Erling Berge 2010

Literature

 Logistic regression I Hamilton Ch 7 p217-234

Spring 2010

© Erling Berge 2010

2

1

LOGIT REGRESSION

- Should be used if the dependent variable (Y) is a nominal scale
- Here it is assumed that Y has the values 0 or 1
- The model of the conditional probability of Y, E[Y | X], is based on the logistic function (E[Y | X] is read "the expected value of Y given the value of X")

But

Why cannot $E[Y \mid X]$ be a linear function also in this case?

Spring 2010

© Erling Berge 2010

The linear probability model: LPM

- The linear probability model (LPM) of y_i when y_i can take only two values (0, 1) assumes that we can interpret E[y_i | X_i] as a probability
- $\mathbf{X}_{i} = \{\mathbf{x}_{1i,} \mathbf{x}_{2i,} \mathbf{x}_{3i}, \dots, \mathbf{x}_{(K-1)i}\}$
- $E[y_i | X_i] = b_0 + \Sigma_j b_j x_{ji} = Pr[y_i = 1]$
- This leads to severe problems:

Spring 2010

© Erling Berge 2010

Are the assumptions of a linear regression model satisfied for the LPM?

- One assumptions of the LPM is that the residual, e_i satisfies the requirements of OLS
- The the residual must be either
 - $-e_{i} = 1 (b_{0} + \Sigma_{j} b_{j} x_{ji})$ or
 - $-e_{i} = 0 (b_{0} + \Sigma_{j} b_{j} x_{ji})$
- This means that there is heteroscedasticity (the residual varies with the size of the values on the x-variables)
- There are estimation methods that can get around this problem (such as 2-stage weighted least squares method)
- One example of LPM:

Spring 2010

© Erling Berge 2010

5

OLS regression of a binary dependent variable on the independent variable "years lived in town"

ANOVA tabell	Sum of Squares	df	Mean df Square		Sig.
Regression	3,111	1	3,111	13,648	,000(a)
Residual	34,418	151	,228		
Total	37,529	152			
Dependent Variable:			Std		
SCHOOLS SHOULD CLO	В	Error	t	Sig.	
(Constant)	,594	,059	10,147	,000	
YEARS LIVED IN TOWN	-,008	,002	-3,694	,000	

The regression looks OK in these tables

Spring 2010

© Erling Berge 2010

Scatter plot with line of regression. Figure 7.1 Hamilton

Conclusion: LPM model is wrong

 The example shows that for reasonable values of the x variable we can get values of the predicted y where

 $E[y_i | X_j] > 1 \text{ or } E[y_i | X_j] < 0,$

- · For this there is no remedy
- LPM is for substantial reasons a wrong model
- We need a model where we always will have 0 ≤ E[y_i | X_i] ≤ 1
- The logistic function can provide such a model

Spring 2010

© Erling Berge 2010

The logistic function

Logistic curves for different β

MODEL (1)

Definitions:

- The probability that person no i shall have the value 1 on the variable y_i will be written Pr(y_i =1).
- Then $Pr(y_i \neq 1) = 1 Pr(y_i=1)$
- The odds that person no i shall have the value 1 on the variable y_i, here called O_i, is the ratio between two probabilities

$$O_i(y_i = 1) = \frac{\Pr(y_i = 1)}{1 - \Pr(y_i = 1)} = \frac{p_i}{1 - p_i}$$

Spring 2010

© Erling Berge 2010

11

MODEL (2)

Definitions:

The LOGIT, L_i, for person no i (corresponding to Pr(y_i=1)) is the natural logarithm of the odds, O_i, that person no i has the value 1 on variable y_i, is written:

 $L_i = In(O_i) = In\{p_i/(1-p_i)\}$

- The model assumes that L_i is a linear function of the explanatory variables \boldsymbol{x}_j ,
- i.e.:
- $L_i = \beta_0 + \Sigma_j \beta_j x_{ji}$, where j=1,...,K-1, and i=1,...,n

Spring 2010

© Erling Berge 2010

Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/

MODEL (3)

 Let X = (the collection of all x_i), then the probability of Y_i = 1 for person no i

$$\Pr(y_{i} = 1) = E[y_{i} | X_{i}] = \frac{1}{1 + \exp(-L_{i})} = \frac{\exp(L_{i})}{1 + \exp(L_{i})}$$

where $L_{i} = \beta_{0} + \sum_{j=1}^{K-1} \beta_{j} X_{ji}$

The graph of this relationship is useful for the interpretation what a change in x means

Spring 2010

© Erling Berge 2010

13

MODEL (4)

In the model $Y_i = E[y_i | X_j] + \varepsilon_i$ the error is either

• $\epsilon_i = 1 - E[y_i \mid X_j]$ with probability $E[y_i \mid X_j]$ (since $Pr(y_i = 1) = E[y_i \mid X_j]$),

or the error is

- $\epsilon_i = E[y_i | X_j]$ with probability 1 $E[y_i | X_j]$
- Meaning that the error has a distribution known as the binomial distribution with p_i = E[y_i | X_j]

Spring 2010

© Erling Berge 2010

Estimation by the ML method

- The method used to estimate the parameters in the model is Maximum Likelihood
- The ML-method gives us the parameters that maximize the likelihood of finding just the observations we have got
- This Likelihood we call ${\cal L}$
- The criterion for choosing regression parameters is that the Likelihood becomes as large as possible

Spring 2010

© Erling Berge 2010

15

Maximum Likelihood (1)

 The Likelihood equals the product of the probability of each observation.
 For a dichotomous variable where Pr(Y_i = 1)=P_i this can be written

$$\mathcal{L} = \prod_{i=1}^{n} \left\{ P_{i}^{Y_{i}} \left(1 - P_{i} \right)^{(1-Y_{i})} \right\}$$

Spring 2010

© Erling Berge 2010

Maximum Likelihood (2)

- It is easier to maximize the likelihood $\ensuremath{\mathcal{L}}$

if one uses the natural logarithm of $\ensuremath{\mathcal{L}}$:

$$\ln(\mathcal{L}) = \sum_{i=1}^{n} \left\{ y_i \ln P_i + (1 - y_i) \ln(1 - P_i) \right\}$$

- The natural logarithm of *L* is called the LogLikelihood, It will be written *LL*.
- *LL* has a central role in logistic regression.

```
Spring 2010
```

© Erling Berge 2010

Maximum Likelihood (3)

- The LogLikelihood *LL* will always be negative
- Maximizing *LL* is the same as minimizing the **positive LogLikelihood**; i.e. minimizing <u>-*LL*</u>
- Finding parameter values that minimizes *LL* can be done only by "trial and error", i.e. using an iterative procedure

Spring 2010

© Erling Berge 2010

18

From			Coefficients		
Hamilton Tabell 7.1	Iteration	-2 Log Likelihood	Constant	lived	
Initial	0	209,212	-,276		
Step	1	195,684	,376	-,034	
	2	195,269	,455	-,041	
	3	195,267	,460	-,041	
	4	195,267	,460	-,041	

Iterative estimation

Note the column titled -2 LogLikelihood

Spring 2010

© Erling Berge 2010

19

Footnotes to the tables

• Step 0: Point of departure is a model with only a constant and no variables

Iterative estimation

 Estimation ends at iteration no 4 since the parameter estimates changed less than 0.001

For the next slide:

 The Wald statistic that SPSS provides equals the square of the "t" that Hamilton (and STATA) provides (Wald = t²)

Spring 2010

© Erling Berge 2010

Logistic model instead of LPM

OLS regression (slide 6 above)

Dependent Variable: SCHOOLS SHOULD CLOSE	В	Std. Error	t	Sig.
(Constant)	,594	,059	10,147	,000
YEARS LIVED IN TOWN	-,008	,002	-3,694	,000

Logistic regression

Dependent: Schools should close	В	S.E.	Wald	df	Sig.	Exp(B)
Lived in town	-,041	,012	11,399	1	,001	,960
Constant	,460	,263	3,069	1	,080,	1,584

Spring 2010

© Erling Berge 2010

TESTING

Two tests are useful

• (1) The Likelihood ratio test

 This can be used analogous to the Ftest (e.g. comparing two NESTED models)

- (2) Wald test
 - The square root of this can be used analogous to the t-test but is normally distributed

Spring 2010

© Erling Berge 2010

23

Interpretation (1)

- The difference between the linear model and the logistic is large in the neighbourhood of 0 and 1
- LPM is easy to interpret: $Y_i = \beta_0$ when $x_{1i}=0$, and when x_{1i} increases with one unit Y_i increases with β_1 units
- The logistic model is more difficult to interpret. It is non-linear both in relation to the odds and the probability

Spring 2010

© Erling Berge 2010

ODDS and ODDS RATIOS

 The Logit, L_i, (L_i= β₀ + Σ_j β_j x_{ji}) is defined as the natural logarithm of the odds

This means that

• odds = $O_i(Y_i=1) = exp(L_i) = e^{L_i}$

and

- Odds ratio= O_i (Y_i=1| L_i') / O_i (Y_i=1| L_i)
 - where L' and L have different values on only one variable \boldsymbol{x}_{j}

Spring 2010

© Erling Berge 2010

25

Interpretation (2)

- When all x equals 0 then L_i = β₀ This means that the odds for y_i = 1 in this case is exp{β₀}
- If all x-variables are kept fixed (they sum up to a constant) while x₁ increases with 1, the odds for y_i = 1 will be multiplied by exp{β₁}
- This means that it will change with 100(exp{β₁} – 1) %
- The probability Pr{y_i = 1} will change with a factor affect by all elements in the logit

Spring 2010

© Erling Berge 2010

Logistic regression: assumptions

- · The model is correctly specified
 - The logit is linear in its parameters
 - All relevant variables are included
 - No irrelevant variables are included
- x-variables are measured without error
- · Observations are independent
- No perfect multicollinearity
- No perfect discrimination
- · Sufficiently large sample

Spring 2010

© Erling Berge 2010

Assumptions that cannot be tested

- Model specification
 - All relevant variables are included
- · x-variables are measured without error
- · Observations are independent

Two will be tested automatically.

If the model can be estimated by SPSS there is

- No perfect multicollinearity and

- No perfect discrimination

Spring 2010

© Erling Berge 2010

28

Assumptions that can be tested

Model specification

- · logit is linear in the parameters
- no irrelevant variables are included
- Sufficiently large sample
 - What is "sufficiently large" depends on the number of different patterns in the sample and how cases are distributed across these
- Testing implies an assessment of whether statistical problems leads to departure from the assumptions

Spring 2010

© Erling Berge 2010

LOGISTIC REGRESSION Statistical problems may be due to

- Too small a sample
- High degree of multicollinearity
 - Leading to large standard errors (imprecise estimates)
 - Multicollinearity is discovered and treated in the same way as in OLS regression
- High degree of discrimination (or separation)
 - Leading to large standard errors (imprecise estimates)
 - Will be discovered automatically by SPSS

Spring 2010

© Erling Berge 2010

30

Discrimination in Hamilton table 7.5

- Odds for weaker requirements is 44/202 = 0,218 among women without small children
- Odds for weaker requirement is 0/79 = 0 among women with small children
- Odds rate is 0/0,218 = 0 hence exp{b_{woman}}=0
- This means that b_{woman} = minus infinity

Y = Strength of water quality standards	Women without small children	Women with small children
Not weaker	202	79
Weaker OK	44	0

Spring 2010

```
© Erling Berge 2010
```

31

Discrimination/ separation

- Problems with discrimination appear when we for a given x-value get almost perfect prediction of the y-value (nearly all with a given x-value have the same y-value)
- In SPSS it may produce the following message: Warnings
- There is possibly a quasi-complete separation in the data. Either the maximum likelihood estimates do not exist or some parameter estimates are infinite.
- The NOMREG procedure continues despite the above warning(s). Subsequent results shown are based on the last iteration. Validity of the model fit is uncertain.

Spring 2010

© Erling Berge 2010

Logistic regression

 If the assumptions are satisfied logistic regression will provide normally distributed, unbiased and efficient (minimal variance) estimates of the parameters

Spring 2010

© Erling Berge 2010

33

The LikeLihood Ratio test (1)

- The ratio between two Likelihoods equals the difference between two LogLikelihoods
- The difference between the LogLikelihood (*LL*) of two nested models, estimated on the same data, can be used to test which of two models fits the data best, just like the F-statistic is used in OLS regression
- The test can also be used for singe regression coefficients (single variables). In small samples it has better properties than the Wald statistic

Spring 2010

© Erling Berge 2010

The LikeLihood Ratio test (2)

The LikeLihood Ratio test statistic

• $\chi^2_{\rm H} = -2[\pounds\pounds(\text{model1}) - \pounds\pounds(\text{model2})]$ will, if the null hypothesis of no difference between the two models is correct, be distributed approximately (for large n) as the chi-square distribution with number of degrees of freedom equal to the difference in number of parameters in the two models (H)

Spring 2010

© Erling Berge 2010

35

Example of a Likelihood Ratio test

- Model 1: just constant
- Model 2: constant plus one variable
- χ²_H = -2[*LL*(model1) *LL*(model2)]
 = -2*LL*(model1) + 2*LL*(model2)
- Find the value of the ChiSquare and the number of degrees of freedom
- e.g.: LogLikelihood (mod1) = 209,212/(-2)
 - LogLikelihood (mod2) = 195,267/(-2)

Spring 2010

© Erling Berge 2010

36

From

Tab 7.1: -2 Log Likelihood

209,212

195,684

195,269

195,267

195,267

The Wald test (1)

- The Wald (or chisquare) test statistic provided by SPSS = $t^2 = (b_k / SE(b_k))^2$ (where t is the normally distributed t used by Hamilton) can be used for testing single parameters similarly to the t-statistic of the OLS regression
- If the null hypothesis is correct, t will (for large n) in logistic regression be approximately normally distributed
- If the null hypothesis is correct, the Wald statistic will (for large n) in logistic regression be approximately chisquare distributed with df=1

Spring 2010

© Erling Berge 2010

37

Iterasjon	-2 Log likelihood						
0	209,212						
1	152,534						
2	149,466						
3	149,382						
4	149,382						
5	149,382						
Variables	В	S.E.	Wald	df	Sig.	Exp(B)	
Lived	-,046	,015	9,698	1	,002	,955	
Educ	-,166	,090	3,404	1	,065	,847	
Contam	1,208	,465	6,739	1	,009	3,347	
Hsc	2,173	,464	21,919	1	,000	8,784	
Constant	1,731	1,302	1,768	1	,184	5,649	
Spring 2010	© Erling Berge 2010 38						

Excerpt from Hamilton Table 7.2

Confidence interval for parameter estimates

- Can be constructed based on the fact that the square root of the Wald statistic approximately follows a normal distribution with 1 degree of freedom
- $b_k t_{\alpha}^*SE(b_k) < \beta_k < b_k + t_{\alpha}^*SE(b_k)$ where t_{α} is a value taken from the table of the **normal distribution** with level of significance equal to α

Spring 2010

© Erling Berge 2010

39

Can be constructed based on the tdistribution (1)

 If a table of the normal distribution is missing one may use the t-distribution since the tdistribution is approximately normally distributed for large n-K (e.g. for n-K > 120)

Spring 2010

© Erling Berge 2010

STATA				t ²		Prob>t	
SPSS		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1	lived	-,047	,017	7,550	1	,006	,954
	educ	-,206	,093	4,887	1	,027	,814
	contam	1,282	,481	7,094	1	,008	3,604
	hsc	2,418	,510	22,508	1	,000	11,223
	female	-,052	,557	,009	1	,926	,950
	kids	-,671	,566	1,406	1	,236	,511
	nodad	-2,226	,999	4,964	1	,026	,108
	Constant	2,894	1,603	3,259	1	,071	18,060

Excerpt from Hamilton Table 7.3 (from SPSS)

Spring 2010

© Erling Berge 2010

41

More from Hamilton Table 7.3

Iteratio	on	-2 Log likelihood	Coefficients							
			Const	lived	educ	conta m	hsc	female	kids	nodad
Step0		209,212	-0,276							
Step1	1	147,028	1,565	-,027	-,130	,782	1,764	-,015	-,365	-1,074
	2	141,482	2,538	-,041	-,187	1,147	2,239	-,037	-,580	-1,844
	3	141,054	2,859	-,046	-,204	1,269	2,401	-,050	-,662	-2,184
	4	141,049	2,893	-,047	-,206	1,282	2,418	-,052	-,671	-2,225
	5	141,049	2,894	-,047	-,206	1,282	2,418	-,052	-,671	-2,226

Spring 2010

© Erling Berge 2010

Is the model in table 7.3 better than the model in table 7.2 ?

- *LL*(model in 7.3) = 141,049/(-2)
- LL(model in 7.2) = 149,382/(-2)
- $\chi^{2}_{H} = -2[\text{LL}(\text{model 7.2}) \text{LL}(\text{model 7.3})]$
- Find $\chi^{_{\rm H}}_{\rm \, H}$ value
- Find H
- Look up the table of the chisquare distribution

Spring 2010

© Erling Berge 2010

The model of the probability of observing y=1 for person i

$$\Pr(y_i = 1) = E[y_i | x] = \frac{1}{1 + \exp(-L_i)} = \frac{\exp(L_i)}{1 + \exp(L_i)}$$

where the logit $L_i = \beta_0 + \sum_{j=1}^{K-1} \beta_j X_{ji}$ is a linear function
of the explanatory variables

It is not easy to interpret the meaning of the β coefficients just based on this formula

Spring 2010

© Erling Berge 2010

44

The odds ratio

- The odds ratio, **0**, can be interpreted as the relative effect of having one variable value rather than another
- e.g. if x_{ki} = t+1 in L_i ' and x_{ki} = t in L_i
- $\mathbf{O} = O_i (Y_i=1|L_i')/O_i (Y_i=1|L_i)$ = exp[L_i']/ exp[L_i] = exp[β_k]
- Why β_k ?

Spring 2010

© Erling Berge 2010

45

The odds ratio : example I

- The Odds for answering yes =
 e<sup>b₀+b₁*Alder+b₂*Kvinne+b₃*E.utd+b₄*Barn i HH
 </sup>
- The odds ratio for answering yes between women and men =

$$\frac{e^{b_0+b_1*Alder+b_2*1+b_3*E.utd+b_4*Barn_i_HH}}{e^{b_0+b_1*Alder+b_2*0+b_3*E.utd+b_4*Barn_i_HH}} = e^{b_2}$$

Remember the rules of power exponents

Spring 2010

© Erling Berge 2010

The odds ratio : example II

 The Odds for answering yes given one year of extra education

$$\frac{e^{b_0+b_1*Alder+b_2*Kvinne+b_3*(E.utd+1)+b_4*Barn_i_HH}}{e^{b_0+b_1*Alder+b_2*Kvinne+b_3*E.utd+b_4*Barn_i_HH}} = e^{b_3}$$

Remember the rules of power exponents

Spring 2010

© Erling Berge 2010

47

Example from Hamilton table 7.2

- What is the odds ratio for yes to closing the school from one year extra education?
- The odds ratio is the ratio of two odds where one odds is the odds for a person with one year extra education

 $e^{b_0+b_1*\mathring{A}rBuddIByen+b_2*(Utdanning+1)+b_3*UreiningEigEigedom+b_4*MangeHSCmøter}$

$$e^{b_0+b_1*\mathring{A}rBuddIByen+b_2*Utdanning+b_3*UreiningEigEigedom+b_4*MangeHSCm\phi ter}$$

$$=\frac{e^{b_2*(Utdanning+1)}}{e^{b_2*Utdanning}}=e^{b_2}$$
Spring 2010 © Erling Berge 2010 48

Example from Hamilton table 7.2 cont.

- Odds ratio = Exp{b₂} = exp(-0,166) = 0,847
- One extra year of education implies that the odds is reduced with a factor of 0.847
- One may also say that the odds has increased with a factor of 100(0,847-1)% = -15,3%
- Meaning that it has declined with 15,3%

Spring 2010

© Erling Berge 2010

49

Concluding on logistic regression

 If the assumptions are satisfied logistic regression will provide normally distributed, unbiased and efficient (minimal variance) estimates of the parameters

Spring 2010

© Erling Berge 2010